An Introduction to Programming through
C++

Abhiram G. Ranade

Introduction



Outline

Introduction to computers and programming
Some simple programs

Remarks on programming

Spirit of the course



Computers are everywhere!

e Cars, phones, laptops, game consoles, cameras, televisions
contain a computer

 Computers used to:
— Book train/plane/bus tickets

— Search the internet
— Predict the weather

* Goal of the course: Learn how to make computers do things
such as the above



What is a computer?

A computer is a giant electrical circuit that can do the following:
e Receive data from the external world

— data = numbers,

— images, sounds can be represented using numbers and fed to a computer
* Perform calculations on the data it receives
* Send the results back to the external world
What calculations are performed?
* Determined by a program loaded in the computer



Programs

Program = a precise description of the calculations we want
the computer to perform

By feeding different programs to a computer you can make it
do different calculations.

This course tells you how to construct (“write”) programs.

Special notation is to be used to write programs:
“Programming Language”



The C++ programming language

Designed by Bjarne Stroustrup, 1980s.

Evolved out of the C programming language.

C++ is a powerful, complex language.

We will not study all of it.

What we study will still be more convenient and safer than C.
We will lay the foundation for learning advanced features later.



The programming environment

Initial weeks: C++ augmented with Simplecpp
Simplecpp is a C++ library developed in IITB
* Provides facilities convenient to learners
— Graphics programming — more fun!
— Easy to understand “repeat” statement
— “main_program” keyword
 Download from www.cse.iitb.ac.in/~ranade/simplecpp
— Available as Linux/Mac OS library or as IDE for windows and Linux
Later weeks: Only C++

* We may continue to use Simplecpp graphics



http://www.cse.iitb.ac.in/~ranade/simplecpp

The textbook

An introduction to programming through C++, Abhiram Ranade,
McGraw Hill Education, 2014.

 www.cse.iitb.ac.in/~ranade/book.html

* Available in physical and on-line bookstores
* |ntegrated with use of simplecpp

* Reading for this lecture sequence: Chapter 1


http://www.cse.iitb.ac.in/~ranade/book.html

Prerequisites

e Science and math of standard XI|
* No knowledge of computers expected
e Enthusiasm!



Let us write some simple C++ programs

* The programs will draw pictures on the screen.

e Use “Turtle Simulator” contained in simplecpp

— Based on Logo: A language invented for teaching programming to
children by Seymour Pappert et al.

— We “drive” a “turtle” on the screen!

— To drive the turtle you write a C++ program.

— Turtle has a pen, so it draws as it moves.
Drawing pictures seems too much fun?

“You master picture drawing, you master programming!”



#include <simplecpp>
main_program{
turtleSim();
forward(100); right(90);
forward(100); right(90);
forward(100); right(90);
forward(100);

wait(5);

The first program

“Use simplecpp facilities”
Main program begins
Start turtle simulator
— Creates window + turtle at center, facing right

forward(n) :

— Move the turtle n pixels in the direction it is
currently facing.

right(d) :

— Make turtle turn d degrees to the right.
wait(t) :

— Do nothing for t seconds.

} : End of main program



How to run this program

Install simplecpp on your computer,

— See instructions at www.cse.iitb.ac.in/~ranade/simplecpp

Type in the program into a file/IDE. Call it square.cpp
“Compile” it:

— If you installed library on unix run: s++ square.cpp

— If you installed code blocks IDE: use compile button
Execute it:

— On unix, run: ./a.out

— On code blocks: use run button


http://www.cse.iitb.ac.in/~ranade/simplecpp

Demo



Exercises

* Write a program that draws a smaller square.
* Write a program that draws an equilateral triangle.

— Remember that the external angles of a polygon add up to 360
degrees.

— Also remember that all the external angles of an equilateral triangle
are equal.



What we discussed so far

e General information about the course
* |nstalling simplecpp
A program to draw a square



A better way to draw a square

#include <simplecpp>
main_programy
turtleSim();
repeat(4){
forward(10);
right(90);
}
wait(10);
}



Repeat Statement

Form

repeat (x) { yyy }
Causes the statements yyy inside { } to be executed x times.
The statements yyy are called the body.

Each execution of yyy is called an iteration.



How to draw a polygon

#include <simplecpp>
main_program{
turtleSim();
cout << “How many sides?”;
int nsides;
cin >> nsides;
repeat(nsides){
forward(100);
right(360.0/nsides);

}
wait(10);

cout << msg;
* Print message msg on the screen.
int nsides;

* Reserve a cell in memory in which | will store some integer value,
and call that cell nsides.

* You choose the name as you wish, almost!

* int: abbreviation of “integer”

cin >> nsides; :

* Read avalue from the keyboard and put it in the cell nsides.
repeat(nsides) : repeat as many times as content of nsides
360.0/nsides : result of dividing 360 by content of nsides.



Demo



More commands

left(A) : turn left A degrees. Equivalent to right(—A)

penUp(), penDown(): Causes the pen to be raised, lowered

Drawing happens only if the turtle moves while the pen is low.

sgrt(x) : square root of x.
sine(x), cosine(x), tangent(x) : X should be in degrees.
sin(x), cos(x), tan(x) : X should be in radians.

Also commands for arcsine, arccosine, arctangent... See book.



Remarks

* You can use commands without worrying about how exactly
they do their work.

—sgrt(17.35) : will get calculated somehow.
— forward(100) : Don’t worry how the turtle is moved on the screen



Exercises

* Draw a square of side length 100 as before. On top of this
draw a square obtained by joining the midpoints of the sides
of the first square.

— Hint: Use Pythagoras’s theorem to determine the length of the side
of the inner square.

* Draw a dashed line, say a dash of 10 pixels, a gap of 10 pixels,
so on 10 times.



What we discussed

* Repeat statements cause repeated executions of some
statements.

e C1n and cout statements can be used to read from keyboard
and to type messages to the screen.

e C++ has commands to compute mathematical functions as well
as lift the pen up and down.



General remarks about C++ programs

* Program = sequence of statements/commands.
main_program{... written here ...}

“w,n

* Statement/command: terminated by “;
« Commands are executed from top to bottom, left to right.

 Arguments: additional data needed by command to do its work.
— forward: how much forward?
— right: what angle?
— () if no arguments, e.g. turtleSim()



Language syntax

e Syntax = grammatical rules indicating how commands must be written.
* Syntax of programming languages is very strict, e.g.
— “right(90);” cannot be written as “right 90;”.
— “penUp()” cannot be written as “penup()” or “penUp”, i.e. without parentheses.

— We will later learn other kinds of statements which will have their own syntax
which must be adhered to.

* Lot of flexibility is still allowed, e.g.

— Wherever a number is acceptable, often an “expression” such as 360/n is
acceptable

— repeat statement is allowed wherever other statements are allowed, e.g. we can
have a repeat inside another repeat.



Comments

A program will be executed on a computer, but it will also be read by
people.

 Sometimes readers may not understand why the program is written
the way it is written.

e To help such human readers, you can place “comments” in your
program.
— Anything placed between /* and */ is a comment
— Anything between // and end of line is a comment

— A comment is meant only for human readers and is ignored by the computer
during execution.



A program with comments

[* Author: Abhiram Ranade
Program to draw polygon */
#include <simplecpp>
main_program{
turtleSim();
cout << “How many sides?”;
int nsides; cin >> nsides;
repeat(nsides){
forward(100);
right(360.0/nsides); // Exterior angle of an n sided polygon is 360/n

}
wait(10);



#include <simplecpp>
main_program{
turtleSim();

cout << “How many sides?”;

int nsides; cin >> nsides;
repeat(nsides){
forward(100);
right(360.0/nsides);
}
wait(10);
}

Indentation

You will notice that at the beginning of some
lines some space is inserted.

This space is called indentation.

The indentation allows you to quickly see which
statements constitute the body of the repeat,
which statements are part of the main program.

The general rule: if X is "inside” Y, then put two
additional spaces before every line of X.

Also note how the { and } are placed.
Indentation is very helpful for human readers.
Indentation is ignored during execution.



Repeat within repeat

repeat(4){
repeat(3){
forward(10); penUp();
forward(10); penDown();

}
right(90):



How nested repeat statements execute

* repeat(x){ yyy } = execute yyy X times

* If yyy contains repeat (w) {zzz}, then the zzz is executed w
times in each execution of yyy.

e And so on if there are repeats inside zzz



What will the following program do?

#include <simplecpp>
main_program{
cout << “a’;
repeat(5){
cout << “p7;
repeat(2){ cout << “c’;

cout << “d™

}
}



Answer

* The program will print
abccdbccdbccdbccdbecd



Some commonly used terminology

“Control is at statement w”: Computer is currently executing
statement w.

“Control flow”: The order in which statements get executed.

— Execution starts at top and goes down. Retraced if there is a repeat
statement.

Variable: region of memory designated for storing some value you
need

— Example: ns1des which we saw earlier.

— Named so because the value stored in the region can vary

— How to change the value: later.



What we discussed

* General form of a program
* Notions of syntax, terms such as control flow.

* Repeat statements can be nested inside other repeat
statements.



Why picture drawing

The calculations/actions needed to solve any problem will contain patterns
— For example, a sequence of calculations may be repeated

Key programming activity: The pattern in the calculations must be mirrored
by appropriate statements in program.

— If some calculation is to be repeated 5 times, use repeat(5){} rather than writing
out the statement 5 times

Interesting pictures also contain patterns.

To draw interesting pictures you need to use repeat statements
competently

By drawing interesting pictures you get some practice at representing
patterns in your programs.



Other reasons why we focus on picture drawing

* Graphical input and output is very convenient and useful.
— “A picture is worth a thousand words.”

— “Data Visualization” : upcoming area of CS. Useful in Science and
Engineering.

* Drawing is fun!



Spirit of the course

Learn C++ statements/concepts.

— We have already covered a lot of ground, even if it doesn’t seem so.
Understand patterns in the calculations that you want to do

— Very important in all programming, not just drawing.

Goal: if you can solve a problem by hand, possibly taking an
enormous amount of time, by the end of the book, you should
be able to write a program for it.

Learn new ways of solving problems!



Spirit of the course 2

Do not be afraid of using the computer.

“What if | write Xyz in my program instead of pqr?” : Just do
so and find out.

— Be adventurous.

Exercise your knowledge by writing programs — that is the real
test.



Exercises

Draw a 5 pointed star.

— Hint: If the turtle starts at a certain point with a certain orientation and returns
to the same point with the same orientation, it must have turned totally

through a multiple of 360 degrees
Draw a 7 pointed star. How many different 7 pointed stars can you have?

Draw 7 identical circles, with 6 touching the central circle. Circle = polygon of

large no of sides, say 360.

Draw 4x4 array of tiles slightly separated from each other.



Hard Exercise: Plate border design

* You know enough to write
a program to do this!

 Combine together ideas
from previous exercises.




What can you look forward to in this course

We give a demo of programs you could write..

* A sequence of drawings using the turtle.

* Animation of cars moving on the screen

e Animation of a ball bouncing in a box

e Simulation of an airport (hard)

e Gravitational simulation, modelling Newton’s laws.






