
An Introduction to Programming through
C++

Abhiram G. Ranade

Introduction

Outline

• Introduction to computers and programming

• Some simple programs

• Remarks on programming

• Spirit of the course

Computers are everywhere!

• Cars, phones, laptops, game consoles, cameras, televisions
contain a computer

• Computers used to:
– Book train/plane/bus tickets

– Search the internet

– Predict the weather

– …

• Goal of the course: Learn how to make computers do things
such as the above

What is a computer?

A computer is a giant electrical circuit that can do the following:

• Receive data from the external world

– data = numbers,

– images, sounds can be represented using numbers and fed to a computer

• Perform calculations on the data it receives

• Send the results back to the external world

What calculations are performed?

• Determined by a program loaded in the computer

Programs

• Program = a precise description of the calculations we want
the computer to perform

• By feeding different programs to a computer you can make it
do different calculations.

• This course tells you how to construct (“write”) programs.

• Special notation is to be used to write programs:
“Programming Language”

The C++ programming language

• Designed by Bjarne Stroustrup, 1980s.

• Evolved out of the C programming language.

• C++ is a powerful, complex language.

• We will not study all of it.

• What we study will still be more convenient and safer than C.

• We will lay the foundation for learning advanced features later.

The programming environment

Initial weeks: C++ augmented with Simplecpp
Simplecpp is a C++ library developed in IITB
• Provides facilities convenient to learners

– Graphics programming – more fun!
– Easy to understand “repeat” statement
– “main_program” keyword

• Download from www.cse.iitb.ac.in/~ranade/simplecpp
– Available as Linux/Mac OS library or as IDE for windows and Linux

Later weeks: Only C++
• We may continue to use Simplecpp graphics

http://www.cse.iitb.ac.in/~ranade/simplecpp

The textbook

An introduction to programming through C++, Abhiram Ranade,
McGraw Hill Education, 2014.

• www.cse.iitb.ac.in/~ranade/book.html

• Available in physical and on-line bookstores

• Integrated with use of simplecpp

• Reading for this lecture sequence: Chapter 1

http://www.cse.iitb.ac.in/~ranade/book.html

Prerequisites

• Science and math of standard XII

• No knowledge of computers expected

• Enthusiasm!

Let us write some simple C++ programs

• The programs will draw pictures on the screen.

• Use “Turtle Simulator” contained in simplecpp
– Based on Logo: A language invented for teaching programming to

children by Seymour Pappert et al.

– We “drive” a “turtle” on the screen!

– To drive the turtle you write a C++ program.

– Turtle has a pen, so it draws as it moves.

Drawing pictures seems too much fun?

“You master picture drawing, you master programming!”

The first program

#include <simplecpp>

main_program{

turtleSim();

forward(100); right(90);

forward(100); right(90);

forward(100); right(90);

forward(100);

wait(5);

}

• “Use simplecpp facilities”

• Main program begins

• Start turtle simulator
– Creates window + turtle at center, facing right

• forward(n) :
– Move the turtle n pixels in the direction it is

currently facing.

• right(d) :
– Make turtle turn d degrees to the right.

• wait(t) :
– Do nothing for t seconds.

• } : End of main program

How to run this program

• Install simplecpp on your computer,

– See instructions at www.cse.iitb.ac.in/~ranade/simplecpp

• Type in the program into a file/IDE. Call it square.cpp

• “Compile” it:

– If you installed library on unix run: s++ square.cpp

– If you installed code blocks IDE: use compile button

• Execute it:

– On unix, run: ./a.out

– On code blocks: use run button

http://www.cse.iitb.ac.in/~ranade/simplecpp

Demo

Exercises

• Write a program that draws a smaller square.

• Write a program that draws an equilateral triangle.

– Remember that the external angles of a polygon add up to 360
degrees.

– Also remember that all the external angles of an equilateral triangle
are equal.

What we discussed so far

• General information about the course

• Installing simplecpp

• A program to draw a square

🐿

A better way to draw a square

#include <simplecpp>

main_program{

turtleSim();

repeat(4){

forward(10);

right(90);

}

wait(10);

}

Repeat Statement

• Form

repeat (x) { yyy }

• Causes the statements yyy inside { } to be executed x times.

• The statements yyy are called the body.

• Each execution of yyy is called an iteration.

How to draw a polygon

#include <simplecpp>

main_program{

turtleSim();

cout << “How many sides?”;

int nsides;

cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

}

wait(10);

}

cout << msg;

• Print message msg on the screen.

int nsides;

• Reserve a cell in memory in which I will store some integer value,

and call that cell nsides.

• You choose the name as you wish, almost!

• int : abbreviation of “integer”

cin >> nsides; :

• Read a value from the keyboard and put it in the cell nsides.

repeat(nsides) : repeat as many times as content of nsides

360.0/nsides : result of dividing 360 by content of nsides.

Demo

More commands

• left(A) : turn left A degrees. Equivalent to right(–A)

• penUp(), penDown(): Causes the pen to be raised, lowered

Drawing happens only if the turtle moves while the pen is low.

• sqrt(x) : square root of x.

• sine(x), cosine(x), tangent(x) : x should be in degrees.

• sin(x), cos(x), tan(x) : x should be in radians.

• Also commands for arcsine, arccosine, arctangent… See book.

Remarks

• You can use commands without worrying about how exactly
they do their work.

– sqrt(17.35) : will get calculated somehow.

– forward(100) : Don’t worry how the turtle is moved on the screen

Exercises

• Draw a square of side length 100 as before. On top of this
draw a square obtained by joining the midpoints of the sides
of the first square.

– Hint: Use Pythagoras’s theorem to determine the length of the side
of the inner square.

• Draw a dashed line, say a dash of 10 pixels, a gap of 10 pixels,
so on 10 times.

What we discussed

• Repeat statements cause repeated executions of some
statements.

• cin and cout statements can be used to read from keyboard
and to type messages to the screen.

• C++ has commands to compute mathematical functions as well
as lift the pen up and down.

🐿

General remarks about C++ programs

• Program = sequence of statements/commands.

main_program{… written here …}

• Statement/command: terminated by “;”

• Commands are executed from top to bottom, left to right.

• Arguments: additional data needed by command to do its work.

– forward: how much forward?

– right: what angle?

– () if no arguments, e.g. turtleSim()

Language syntax

• Syntax = grammatical rules indicating how commands must be written.

• Syntax of programming languages is very strict, e.g.
– “right(90);” cannot be written as “right 90;”.

– “penUp()” cannot be written as “penup()” or “penUp”, i.e. without parentheses.

– We will later learn other kinds of statements which will have their own syntax
which must be adhered to.

• Lot of flexibility is still allowed, e.g.
– Wherever a number is acceptable, often an ”expression” such as 360/n is

acceptable

– repeat statement is allowed wherever other statements are allowed, e.g. we can
have a repeat inside another repeat.

Comments

• A program will be executed on a computer, but it will also be read by
people.

• Sometimes readers may not understand why the program is written
the way it is written.

• To help such human readers, you can place “comments” in your
program.
– Anything placed between /* and */ is a comment

– Anything between // and end of line is a comment

– A comment is meant only for human readers and is ignored by the computer
during execution.

A program with comments

/* Author: Abhiram Ranade

Program to draw polygon */

#include <simplecpp>

main_program{

turtleSim();

cout << “How many sides?”;

int nsides; cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides); // Exterior angle of an n sided polygon is 360/n

}

wait(10);

}

Indentation

#include <simplecpp>

main_program{

turtleSim();

cout << “How many sides?”;

int nsides; cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

}

wait(10);

}

• You will notice that at the beginning of some
lines some space is inserted.

• This space is called indentation.

• The indentation allows you to quickly see which
statements constitute the body of the repeat,
which statements are part of the main program.

• The general rule: if X is ”inside” Y, then put two
additional spaces before every line of X.

• Also note how the { and } are placed.

• Indentation is very helpful for human readers.

• Indentation is ignored during execution.

Repeat within repeat

repeat(4){

repeat(3){

forward(10); penUp();

forward(10); penDown();

}

right(90);

}

How nested repeat statements execute

• repeat(x){ yyy } = execute yyy x times

• If yyy contains repeat (w) {zzz}, then the zzz is executed w
times in each execution of yyy.

• And so on if there are repeats inside zzz

What will the following program do?

#include <simplecpp>

main_program{

cout << “a”;

repeat(5){

cout << “b”;

repeat(2){ cout << “c”; }

cout << “d”;

}

}

Answer

• The program will print

abccdbccdbccdbccdbccd

Some commonly used terminology

• “Control is at statement w”: Computer is currently executing
statement w.

• “Control flow”: The order in which statements get executed.
– Execution starts at top and goes down. Retraced if there is a repeat

statement.

• Variable: region of memory designated for storing some value you
need
– Example: nsides which we saw earlier.

– Named so because the value stored in the region can vary

– How to change the value: later.

What we discussed

• General form of a program

• Notions of syntax, terms such as control flow.

• Repeat statements can be nested inside other repeat
statements.

🐿

Why picture drawing

• The calculations/actions needed to solve any problem will contain patterns
– For example, a sequence of calculations may be repeated

• Key programming activity: The pattern in the calculations must be mirrored
by appropriate statements in program.
– If some calculation is to be repeated 5 times, use repeat(5){} rather than writing

out the statement 5 times

• Interesting pictures also contain patterns.

• To draw interesting pictures you need to use repeat statements
competently

• By drawing interesting pictures you get some practice at representing
patterns in your programs.

Other reasons why we focus on picture drawing

• Graphical input and output is very convenient and useful.

– “A picture is worth a thousand words.”

– “Data Visualization” : upcoming area of CS. Useful in Science and
Engineering.

• Drawing is fun!

Spirit of the course

• Learn C++ statements/concepts.

– We have already covered a lot of ground, even if it doesn’t seem so.

• Understand patterns in the calculations that you want to do

– Very important in all programming, not just drawing.

• Goal: if you can solve a problem by hand, possibly taking an
enormous amount of time, by the end of the book, you should
be able to write a program for it.

• Learn new ways of solving problems!

Spirit of the course 2

• Do not be afraid of using the computer.

• “What if I write xyz in my program instead of pqr?” : Just do
so and find out.

– Be adventurous.

• Exercise your knowledge by writing programs – that is the real
test.

Exercises

• Draw a 5 pointed star.

– Hint: If the turtle starts at a certain point with a certain orientation and returns

to the same point with the same orientation, it must have turned totally

through a multiple of 360 degrees

• Draw a 7 pointed star. How many different 7 pointed stars can you have?

• Draw 7 identical circles, with 6 touching the central circle. Circle = polygon of

large no of sides, say 360.

• Draw 4x4 array of tiles slightly separated from each other.

Hard Exercise: Plate border design

• You know enough to write
a program to do this!

• Combine together ideas
from previous exercises.

What can you look forward to in this course

We give a demo of programs you could write..

• A sequence of drawings using the turtle.

• Animation of cars moving on the screen

• Animation of a ball bouncing in a box

• Simulation of an airport (hard)

• Gravitational simulation, modelling Newton’s laws.

